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EXECUTIVE SUMMARY

EXPERIMENTAL STUDY OF THE LOAD
RESPONSE OF LARGE DIAMETER CLOSED-

ENDED AND OPEN-ENDED PIPE PILES
INSTALLED IN ALLUVIAL SOIL

Introduction

A seven-span concrete bridge was constructed over the Wabash

River in Lafayette, Indiana. The bridge, which has a total length

of 305 m (1,000 ft) and typical spans of 46 m (152 ft), consists of

six hammerhead bridge piers in the center and two end bents

supported on open-ended and closed-ended pipe piles, respec-

tively. According to the structural bridge design, the dead load

carried by each pile ranges from 1,014 kN (228 kips) to 1,495 kN

(336 kips), whereas the live load ranges from 512 kN (115 kips)

to 1,188 kN (267 kips), depending on the location of the piles.

A closed-ended and an open-ended test pile (with the same, or

almost the same, diameter for the production pile) were instru-

mented at the Bowen Laboratory, transported to the construction

site, then driven into the ground and statically load tested. This

report presents in detail the results of the site investigation, pile

instrumentation procedure, pile driving records, and interpreta-

tions of the static load test results.

Findings

The driving resistance (blow counts) for the closed-ended pile

was consistently greater than that of the open-ended pipe at any

given depth. The final plug length ratio (PLR) for the open-ended

test pile was 77.7% at the end of driving. Based on the static load

tests, the ultimate resistances were 4,559 kN (1,025 kips) for the

closed-ended test pile and 4,782 kN (1,075 kips) for the open-

ended test pile. The open-ended pile showed greater additional

resistance mobilization from the ultimate load to the plunging

load than did the closed-ended pile; this is due to the contribution

from the plug to the total pile resistance.

Representative CPT-based pile design methods were used for

the estimation of the bearing capacity of the test piles. The design

methods provide good estimates for the shaft resistance in sandy

soil with low gravel content (,20%) but significantly overpredict

the shaft resistance in soil with a high gravel content (.30%).

The base resistance was significantly overestimated for the closed-

ended pile due to the high gravel content (near 50%) found at the

depth of the pile base. In contrast, a good estimate was found

for the base resistance of the open-ended pile, although its pile

base was also located in soil with a high gravel content. The reason

for this is that the annulus resistance, which takes the main

portion (87.6%) of the base resistance, is well represented by the

cone resistance because the cone diameter is comparable to the

annulus thickness.

Implementation

The unit shaft and base resistances measured from the static

load tests provide a valuable reference for the design of the pro-

duction piles used to support the piers and bents of the Sagamore

Parkway Bridge. The study significantly advanced the under-

standing of the behavior of closed-ended and open-ended pipe piles

driven in gravelly sand, and it brought insights into the applicability

of the current CPT-based design methods for large diameter open-

ended and closed-ended pipe piles in gravelly soil profiles.
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1. INTRODUCTION

1.1 Background

For the first time, INDOT was using large-
diameter (24 inch) closed-ended and open-ended piles
to support the piers and bents of the Sagamore
Parkway over the Wabash River. Preliminary site
investigation results indicated that the soil profile
at the construction site consists of mainly sandy soils
with various gravel contents (as high as 40%–60%

at certain depths). Currently, there is no established
pile design method that accounts for the presence
of high gravel contents in soil profile. Therefore,
static load tests were performed at the construction
site on densely instrumented closed-ended and open-
ended test piles with dimensions that resemble those
of the production piles. A double-wall instrumenta-
tion was implemented for the open-ended test pile
such that measurements of the pile’s inner and outer
shaft resistances could be separated. The detailed
resistance measurements obtained from the static
load tests provide valuable guidance in the design
of the production piles. The tremendous challenges
present in the pile instrumentation, assembly of the
double-wall system, and operation logistics for test
piles of such large scale (2 ft in diameter, 60 ft and
100 ft in length) made the present side-by-side static
pile load tests a unique case study in the pile testing
history.

1.2 Report Structure

Chapter 2 reports results of the site investigation
carried out prior to the static load tests. The profiles of
the CPT cone resistance qc and SPT blow counts NSPT,
along with the basic soil properties obtained from
laboratory tests on soil samples collected from the field
played an important role in the interpretation of the
static load test results.

Chapter 3 presents details of the pile instrumenta-
tion for the closed-ended and open-ended test piles.
A hybrid instrumentation scheme, involving the instal-
lation of both electrical-resistance and the vibrating-
wire strain gauges, was used for both test piles. The
chapter includes the strain gauge layouts on the test
piles, gauge installation and protection procedures and
steps followed to assemble the double-wall system for
the open-ended test pile.

In Chapter 4 and Chapter 5, pile driving records and
static load test results for the closed-ended and open-
ended test piles, respectively, are reported. The results
include profiles of blow counts, plug measurement for
the open-ended test pile, load-settlement curves, resis-
tance components measured at different settlement
levels, and profiles of the residual loads and unit shaft
resistance.

Chapter 6 compares the behavior of the closed-
ended and open-ended piles during pile driving and
static load tests. The side-by-side static load tests for
the two densely instrumented piles of different types
(with almost identical outer diameter and installed in
the same soil profile) provide a rare and valuable case
history for the foundation community.

Chapter 7 summarizes the main contents and findings
presented in the report.

2. SITE INVESTIGATION

2.1 In Situ Tests

The test site was located on the east bank of the
Wabash River at its intersection with Sagamore
Parkway. Figure 2.1 shows the results of two standard
penetration tests (SPTs) and three-cone penetration
tests (CPTs) performed near the static pile load testing
location. Disturbed soil samples were collected from
various depths of the soil profile using a split-spoon
sampler during the SPTs. As shown in Figure 2.1, the
gravel content (with gravel defined as particles larger
than 4.75 mm) is lower than 20% at most depths above
z 5 16 m (52 ft), except in a thin layer at z 5 9 m (30 ft)
where high gravel content (above 50%) was found.
Then, from z 5 16 m (52 ft) to 35 m (115 ft), the gravel
content is mostly greater than 30%, and as high as
50%–60% at certain depths. The high gravel content
present in the soil profile made it challenging to push
the CPT cone (even when using a cone with a diameter
of 44.6 mm (1.75 inch)) through these gravelly layers.
Therefore, whenever it was not possible to push the
CPT cone through a hard soil layer, the cone was
retracted to the ground surface, and a string of hollow-
stem augers was used to drill through it. The CPT then
advanced through the center of the augers until the next
hard layer was found. This drill-and-push procedure
was repeated as needed until the desired boring depth
was reached. Because of the logistical difficulties with
such a procedure, it was used only for CPT-3, for which
a penetration depth of 33 m (108 ft) was reached; (this
depth is greater than the embedment depths of both
the test piles). The water table was found at a depth of
3.05 m (10 ft) below the ground surface at the time of
the static load test.

2.2 Laboratory Tests

Soil samples, as shown in Figure 2.2, collected from
the construction site were tested in laboratory to obtain
their basic properties. Figure 2.3 shows the grain size
distributions of the soil samples collected at various
depths. Table 2.1 provides a summary of the basic
soil properties of each soil layer in the soil profile,
which consists mainly of poorly graded sand and gravel
mixtures.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/03 1



Figure 2.1 In situ test results: blow counts NSPT, cone resistance qc, mean particle diameter D50, and gravel content (the pile base
elevation for the two test piles are shown for reference. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)

Figure 2.2 Soil samples collected using a split-spoon sampler during the SPTs.

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/03



Figure 2.3 Grain size distributions of soil samples obtained from the test site at various depths. (Modified after Han, Ganju,
Salgado, & Prezzi, in press b.)

TABLE 2.1
Soil profile at the test site

Layer

no. Depth (ft) Soil description ct (kN/m3) ct (lb/ft3)

Gravel

content (%)

D50

(mm)

D50

(inch) CU CC USCS classification

1 0–18 Clayey silt with sand 19.5 125 0 — — 3.0 0.8 —

2 18–27 Sand with gravel 20.0 128 4 0.4 0.02 2.6 0.9 SP

3 27–34 Sandy gravel 21.5 138 49 4.5 0.18 34.6 0.7 SP

4 34–55 Sand with gravel 20.0 128 10 0.9 0.04 4.8 0.7 SP

5 55–74 Gravely sand 21.5 138 43 4.1 0.16 16.6 0.6 SP

6 74–107 Gravely sand 21.5 138 28 1.1 0.04 8.3 0.8 SP

Source: Modified after Han, Ganju, Salgado, & Prezzi, in press b.

ct 5 total unit weight, D50 5 mean particle diameter, CU 5 coefficient of uniformity 5 D60/D10, CC 5 coefficient of curvature 5 (D30)2/

(D106D60).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/03 3



3. INSTRUMENTATION OF THE TEST PILES

3.1 Double-Wall System for the Open-Ended Pile

The axial load Q applied at the head of an open-
ended pipe pile is balanced by three resistance
components: the outer shaft resistance Qs, the inner
shaft resistance Qplug provided by the soil plug, and the
annulus resistance Qann at the pile base:

Q~QszQplugzQann 3:1ð Þ

In order to properly understand open-ended pipe pile
resistance mobilization, these three components of the
pile bearing capacity should be independently measured
in static load tests. Full instrumentation of closed-
ended pipe piles with flat or conical bases involves
attaching diametrically opposed strain gauges at
regularly spaced intervals along the entire pile length.
As the pile is loaded, strains measured at each depth
by these gauges are used to calculate the forces acting
on the corresponding pile cross-sections and to obtain
the load transfer curves for each load increment at
the pile head (Abu-Farsakh, Haque, & Tsai, 2017;
Bica, Prezzi, Seo, Salgado, & Kim, 2014; Fellenius,
Harris, & Anderson, 2004; Han, Prezzi, Salgado, &
Zaheer, 2017; Jardine, Zhu, Foray, & Yang, 2013; Kim,
Bica, Salgado, Prezzi, & Lee, 2009; Li, Stuedlein, &
Marinucci, 2017; Paik, Salgado, Lee, & Kim, 2003;
Paik & Salgado, 2003; Seo, Prezzi, & Salgado, 2013;
Seo, Yildirim, & Prezzi, 2009). The derivative (slope) of
the load transfer curve with respect to depth divided by
the pile perimeter gives the magnitude of the unit shaft
resistance: a steeper slope indicates greater unit shaft
resistance. Such an instrumentation scheme would
not work for an open-ended pile since it would not
allow independent measurement of the shaft resistances
mobilized along the inner and outer surfaces of the pile,
for which a double-wall open-ended pipe pile with
instrumentation on both the inner and the outer pipes is
needed. Two types of double-wall systems have been
mentioned in the literature: one with the two concentric
pipes connected at the pile base (Finlay, White, Bolton,
& Nagayama, 2001), and the other with the two pipes
connected at the pile head (Igoe, Gavin, & O’Kelly,
2011; Iskander, 2011; Lehane & Gavin, 2001; Paik
et al., 2003; Paik & Lee, 1993; Paik & Salgado, 2003).
The second type of instrumentation, as shown Figure 3.1,
was used in the present study. The two concentric pipes
(one with slightly smaller diameter than the other) were
connected at the pile head but not at the base. A pile
shoe was connected to only one of the pipes (to the
inner pipe in this case). This way, the inner and outer
pipes strain independently when an axial load Q is
applied at the pile head. This can be better understood
by considering the force balance at three cross sections
of interest, as shown in Figure 3.1. The axial force at
cross section A (at the top of the outer pipe) is balanced
by the outer shaft resistance Qs. The axial force at cross
section B (at the top of the inner pipe) is balance by
the summation of Qann and the inner shaft resistance,

Figure 3.1 Double-wall pipe system to separate measure-
ments of the inner and outer resistance for an open-ended pile.
(Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.)

which is in balance with the compressive stress at the
base of the plug, known as the plug resistance Qplug.
The axial force at cross section C (near the base of
the inner pipe) is balanced by the annulus resistance
Qann. Therefore, strain measurements at these locations
provide independent measurement of the three compo-
nents (Qs, Qann, and Qplug) of the axial bearing capacity
of an open-ended pipe pile. A detailed profile of the
axial load and the throughout the pile length can be
obtained by installing a series of strain gauges along the
entire pile length.

3.2 Instrumentation Schemes

The instrumentation of the two test piles was carried
out in Bowen Laboratory, Purdue University before
they were delivered to the test site. A hybrid instru-
mentation scheme, involving the installation of both
electrical-resistance and the vibrating-wire strain gau-
ges, was used for both test piles. Bica et al. (2014)
provided a detailed review of the advantages and dis-
advantages of these two strain gauge types. Figure 3.2
shows the dimensions of the test piles and the loca-
tions of the strain gauges installed on them. All strain
gauges were installed on the piles in pairs positio-
ned diametrically opposite to each other at specified
cross sections of the test piles; this was done so that
the strains measured during loading by any strain
gauge pair could be averaged to exclude the effect of
bending moments on axial strain measurement. The
closed-ended test pile was instrumented in a single,
18.3-m-long segment (60 ft), whereas the open-ended
test pile was instrumented in two segments (top and
bottom segments) of 18.3 m in length (60 ft) due to
transportation limitations for pile length. Table 3.1
summarizes the dimensions of the test and reaction
piles and the number and type of strain gauges instal-
led on each pile.
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Figure 3.2 Dimensions and the instrumentation details for the (a) closed-ended test pile and (b) open-ended test pile. (Modified
after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019; Ganju, Han, Prezzi, & Salgado, 2019.)
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TABLE 3.1
Dimensions of the test piles and reaction piles

Outer diameter

(inch)

Inner diameter

(inch)

Wall thickness

(inch)

Embedment

depth (ft)

Number

of ER

Number

of VW

Closed-ended test pile 24 23 0.5 58 40 24

Open-ended test pile 26 221 2 100 76 28

Open-ended reaction piles 24 23 0.5 125–127 0 0

Source: Modified after Han, Ganju, Salgado, & Prezzi, in press b.
1The inner diameter of the bottom segment (double-wall system) of the open-ended test pile.

ER 5 electrical-resistance strain gauge, VW 5 vibrating-wire strain gauge.

Figure 3.3 Instrumentation details of the closed-ended test
pile. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)

Figure 3.4 Closed-ended test pile and open-ended test pile
(top and bottom segments) with instrumentation completed.
(Modified after Han, Ganju, Salgado, & Prezzi, in press b.)
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3.3 Instrumentation Procedures

After surface preparation at the desired locations, the
closed-ended test pile was instrumented with electrical-
resistance strain gauges (Tokyo Sokki Kenkyujo Model
FLA-6-350-11-3LT) and vibrating-wire strain gauges
(Geokon Model 4000) following recommended gauge
installation procedures (Han, Prezzi, Salgado, &
Zaheer, 2017). All the steps required for proper
installation of the electrical-resistance strain gauges
were described by Han et al. (Han, Prezzi, Salgado, &
Zaheer, 2017; Han, Ganju, Prezzi, Salgado, & Zaheer,
2019). Mineral wool was carefully wrapped around the
gauge cables collected along the length of the pile so
that the welding of steel angles onto the pile (see
Figure 3.3) could proceed without risk of excessive heat
damaging the gauges and cables. The channels pro-
tected the gauges and cables from damage during
transportation and driving operations. A steel conical
driving shoe (with an apex angle of 60 degrees) was
welded to the base of the pile to improve drivability
in the gravelly sand layers of the soil profile (see
Figure 3.4).

The open-ended test pile was composed of two
pipe segments welded in the field. The estimated length
of the soil plug that would form during driving
was smaller than the length of the bottom segment
(518.3 m 5 60 ft). Therefore, a double-wall system was
used only for the bottom segment of the pile. Since the

gap between the inner and outer pipes forming the double-
wall system of the bottom segment was only 25 mm
(1 inch) (see Figure 3.2b), only electrical-resistance
strain gauges were placed on the inner pipe (vibrating-
wire gauges would no fit there). To allow proper
assembly of the inner and outer pipes of the double-
wall system, steel spacing rods of 10 mm (0.4 inch) in
diameter were welded on the outer surface of the inner
pipe along its length (see Figure 3.5a); the diameter of
the steel spacing rods was greater than the diameter of
the gauge cables (5 4.3 mm 5 0.17 inch). The electrical
resistance strain gauges were installed, and their cables
were tightly arranged and fixed in between the spacing
rods using super glue and GorillaH tape. A hardened
steel cutting shoe (Versa-Steel Inc. VS700 series 196)
was welded to the base of the inner pipe. A pair of
high-capacity nylon wheels mounted at the top end of
the inner pipe (see Figure 3.6a) and an overhead crane
(see Figure 3.6b) were used to facilitate the sliding of
the inner pipe into the outer pipe to build the double-
wall pile. The instrumentation of the outer pipe of the
bottom pile segment and the single pipe of the top pile
segment was similar to that of the closed-ended test
pile, with both electrical-resistance and vibrating-wire
strain gauges installed.

After sliding, the inner and outer concentric pipes
were connected at the top by welding them to two



steel rings (one with thickness 5 13 mm, I.D. 5 584 mm
(23 inch) and O.D. 5 634 mm (25 inch), and the other
with thickness of 51 mm 5 2 inch, I.D. 5 558 mm 5

22 inch and O.D. 5 660 mm 5 26 inch). The 76 mm
(3 inch) gap between the outer pipe and the cutting
shoe (welded on the inner pipe) was filled with
silicone (Figure 3.6c), which is deformable when com-
pared with steel. Thus, the two pipes could strain
independently upon loading. As shown in Figure 3.6c,
four centering bolts with a diameter of 25.4 mm (1 inch)
were screwed in through the outer pipe and pushed on
the inner pipe to make the pipes concentric during
storage and transportation. When the pile was stored in
the horizontal position, the weight of the inner pipe was
supported by the connection with the outer pipe on the
top end and the centering bolts on the bottom end of the
double-wall system. The centering bolts were removed
immediately before pile driving. Figure 3.4 shows all the
pile segments with completed instrumentation before
they were delivered to the test site.

3.4 Measurement for the Plug Formation

The response of open-ended pipe piles to axial load-
ing depends on plug formation during driving. As an

Figure 3.5 Instrumentation details for the inner pipe of the
bottom segment for the open-ended test pile: (a) spacing rods
welded on the surface of the inner pipe; (b) arrangement of the
strain gauges and their cables on the inner pipe. (Modified
after Han, Ganju, Salgado, & Prezzi, in press b.)

open-ended pipe pile is driven into the ground, soil
enters the pile through the opening at the bottom; the
soil inside the pile plays an important role in resistance
mobilization both during driving and in static loading
(Igoe et al., 2011; Lehane, Schneider, & Xu, 2005b;
Paik & Salgado, 2003). The load response of an open-
ended pipe pile is closely related to the formation of
the soil plug during pile driving. Researchers have
proposed equations to estimate the axial bearing
capacity of open-ended pipe piles as a function of
plug parameters (e.g., the incremental filling ratio
IFR and the plug length ratio (PLR)) (Lee, Salgado,
& Paik, 2003; Lehane et al., 2005b; Paik & Salgado,
2003).

Figure 3.7 shows a weight system that was used to
measure the development of a soil plug during driving
of an open-ended pipe pile. Two different weights
were connected to the two ends of a string that passes
through a horizontal pipe welded about 1B below the
pile head. The larger weight is placed on top of the soil
plug inside the pipe pile, and the smaller weight is left

Figure 3.6 Assembly of the double-wall system for the open-ended test pile: (a) two support wheels attached to the top of the
inner pipe; (b) sliding of the inner pipe into the outer pipe with the assistance of the overhead crane; (c) base of the open-ended test
pile. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)

Figure 3.7 Measurement scheme for the plug formation.
(Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.)
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hanging outside the pile. When the pile is driven
from an initial state at a depth L0 to a new state L1,
the plug length Lp increases from Lp,0 to Lp,1 for an
increment DLp of pile penetration, and the length of the
string hanging outside of the pile will accordingly
increase by the same amount. Thus, the plug length
increment DLp can be easily measured as the change of
position of the smaller weight (hanging outside the pile)
with respect to tick marks of a scale painted on the pile
outer surface.

4. STATIC AND DYNAMIC LOAD TESTS OF THE
CLOSED-ENDED PIPE PILE

4.1 Pile Installation

The CEP was initially driven into the ground to a
depth of 17.37 m (57 feet) using a single-impact diesel
hammer (Model No. APE D70-52) on October 4, 2016
(see Figure 4.1). The hammer has a ram weight of 68.7
kN (15.4 kip), maximum capacity of 235 kN-m (173,327
ft-lbs.) and a maximum stroke length of 3.4 m (11.15 ft).
Strain readings from ER gauges were recorded at
the end of driving to obtain the locked-in residual loads
due to pile driving. After driving, 0.3 m (1 ft) of sandy
backfill was added to elevate the ground surface to
accommodate the loading frame and the supporting
machinery. As a result, the final embedment depth of the
pile became 17.68 m (58 ft).

Figure 4.2 shows the driving resistance profile (blow
counts per meter of pile penetration as a function of
depth) recorded during driving. For the top 5 m (16.4 ft),
the driving resistance through the clayey silt layer was
low (less than 4 blows/m). The driving resistance increa-
sed for penetration depths greater than 6 m (19.7 ft) as
the CEP started to sense the dense gravelly-sand layers.
A peak in driving resistance (110 blows/m 5 33 blows/ft)
was observed at a penetration depth of 7.5 m (24.6 ft),
which was followed by a small drop and then a mono-
tonic rise thereafter to about 100 blows/m (30 blows/ft)
at the final penetration depth of 17.37 m (57 ft) from the
ground surface.

4.2 Static Load Test

Figure 4.3 shows a schematic of the front and top
views of the load frame and settlement measurement
setups for the SLT. Load was applied on the head of
CEP using a 2-MN-capacity hydraulic jack (Model No.
ATF-Model-24). The reaction for the hydraulic jack
was obtained from a loading frame attached to eight
open-ended piles with outer diameter of 610 mm (24 in).
To ensure capacity, each open-ended reaction pile was
driven to a minimum depth of 36.6 m (120 ft). The
positions of the reaction piles were chosen to have a
minimum distance of 5B between the CEP and the
reaction piles, in accordance with ASTM (2013).

Figure 4.1 CEP being driven into the ground with a single-
impact diesel hammer positioned on the top and a guiding
frame around the CEP to ensure verticality during driving.
(Modified after Ganju et al., 2018.)

Figure 4.2 Driving resistance for CEP verses depth.
(Modified after Ganju et al., 2018.)
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Figure 4.3 Top and front view of the SLT loading frame and settlement measurement system. (Modified after Ganju et al., 2018.)
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A recently calibrated load cell was used to measure
the loads applied by the hydraulic jack to the CEP head
during the SLT. To prevent any application of eccentric
loading at the pile head, all the components of the
loading frame were properly aligned, and a hemisphe-
rical bearing was placed between the reaction frame
and the load cell. Four digital dial gauges mounted
on reference beams were used to measure the vertical
settlements at the pile head. The reference beams were
anchored sufficiently far from the CEP and the reaction
piles so as not to be affected by ground movement.
Measurements from the four dial gauges agreed
throughout the SLT, indicating minimal inclined
settlement.

The SLT was carried out on October 17, 2016, 13
days after the CEP was driven and lasted 36 hours.
Prior to start of the SLT, the ER and VW gauges were
zeroed. The SLT was carried out as a slow-maintained

test with small load increments to get a complete
definition of the load-settlement curve all the way to the
plunging load. A strict loading criterion was followed
during the SLT: a load increment was applied at the
pile head, and the resulting settlement was measured
at zero, one, two, five, and ten minutes and every ten
minutes thereafter for a period of up to two hours.
The next load increment was applied when the rate
of settlement was smaller than 0.25 mm/hour (the
settlement rate was calculated from two consecutive
settlement readings). Whenever the settlement rate
was not below the 0.25 mm/hour threshold within the
prescribed 2-hour period, the next load increment was
halved and applied when the settlement difference
between two consecutive settlement readings was less
than 5%. These applied load increments [maximum of
444.8 kN (100 kips)] were considerably smaller than the
four equal increments proposed by ASTM (2013).



Figure 4.4 Static load test results: (a) load-settlement curve;
(b) total, base and shaft capacity components plotted against
pile head settlement w and relative settlement w/B. (Modified
after Ganju et al., 2018.)

Figure 4.4a shows the load-settlement curve obtai-
ned from the SLT. At each load level, several settlement
readings were taken, as described above. A load increment
of 444.8 kN (100 kips) was used until a load of 2,224.1
kN (500 kips) was reached. The load increments were
then decreased to 222.4 kN (50 kips) until the load level
of 3,781.0 kN (850 kips). The load increments were
further decreased to 111.2 kN (25 kips) thereafter, all
the way to the plunging load of 5449 kN (1225 kips).
This allowed us to better define the ultimate capacity
of the pile at 0.1B settlement and prevent excessive
rate of settlement as the pile approached its plunging

load. Plunging was assessed to occur when the settle-
ment rate was greater than 50 mm/hour. After the
plunging load, the pile was unloaded in four equal
decrements with a waiting period of 15 min between
each load decrement.

With the strain gauge measurements along the pile
shaft and the total applied load, the shaft and base
capacity of the pile were calculated. These are shown in
Figure 4.4b as a function of pile head settlement w and
relative settlement w/B. The load-settlement response
of the CEP was almost linear up to a load of 2,891 kN
(650 kips), corresponding to w/B 5 0.02 (w512.2 mm);
at this settlement level, 65% of the total capacity of
the CEP came from the shaft (1,891 kN 5 425 kips)
and 35% from the base (1,000 kN 5 225 kips). Upon
further loading, the shaft capacity stabilized, with
the additional load increments taken mostly by the
base of the CEP. At w/B 5 0.05 (w 5 31.7 mm), 56%
(2,189 kN 5 492 kips) of the total capacity of the
CEP pile (3,892 kN 5 875 kips) was transferred to
the surrounding soil by the shaft and 44% (1,703 kN 5

383 kips) by the base.

The ultimate capacity, defined as the total capacity
at the pile head when w/B 5 0.1 (Clausen, Aas, &
Karlsrud, 2005; Han, Prezzi, Salgado, & Zaheer, 2017;
Jardine, Chow, Overy, Standing, & Jamie, 2005; Kolk,
Baaijens, & Senders, 2005; Lehane et al., 2005b;
Salgado, 2008), was equal to 4,559 kN (1,024 kips),
which was approximately equally distributed between
the shaft (2,389 kN 5 537 kips) and base (2,171 kN
5 488 kips). With additional load increments, the
base capacity surpassed the shaft capacity at a total
load level of about 5,227 kN (at w/B 5 0.175; w 5

106.9 mm). Shortly thereafter, the pile started to plunge
at a total load of 5,449 kN (1,225 kips) (corresponding
to w/B 5 0.212).

4.3 Residual Loads

Immediately after pile driving, the pile tends to
recover the compressive strain induced by driving, and
the soil below the pile base tends to rebound. The soil
surrounding the pile shaft resists the relative movement
between the pile and the soil through interface friction,
resulting in locked-in residual axial loads in the pile
(Alawneh & Malkawi, 2000; Briaud & Tucker, 1984;
Fellenius, 2002; Han, Prezzi, Salgado, & Zaheer, 2017;
Kim et al., 2009; Paik et al., 2003). The residual loads
do not affect the total measured capacity of the pile;
however, they do affect the distribution of the total
capacity into shaft and base components.

The residual loads in the CEP after pile driving
were measured by zeroing all the ER gauges prior to
driving and taking strain measurements immediately
after driving. The VW gauges were not used for residual
load measurements, as these tend to drift during driv-
ing due to micro-slippages between the sensor coil and
the sensor bar due to inertial forces (Bica et al., 2014).
The residual loads and the unit shaft friction measured
at the end of driving are shown in Figure 4.5a and b,
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respectively. The residual loads in the pile were com-
pressive throughout the length of the pile. At the head
of the pile, which was above the ground surface, the
residual axial loads were zero. A maximum residual
load of 420 kN (94.4 kips) was measured at a depth of
12 m (39.4 ft) from the ground surface, while, at the pile
base, a load of 233 kN (52.4 kips) was recorded. The
resulting unit shaft friction above 12m (39.4 ft) depth
was negative (pointing downwards), and from 12 m

(39.4 ft) to the pile base at 17.68 m (58 ft), it was
positive (pointing upwards). For about 70% of the pile
length, the unit shaft friction arising from the residual
loads was negative.

4.4 Shaft and Base Capacities

Since the strain gauges were re-zeroed prior to the
SLT, the loads measured during the SLT do not
account for the locked-in residual loads developed
during pile driving. The true loads in the pile are the
summation of the axial loads measured during the SLT
and the locked-in residual loads measured at the end
of driving. Figure 4.6a shows for the loads correspond-
ing to w/B 5 0.1 (ultimate limit state): the residual
loads measured at the end of driving, the axial loads
measured during the SLT and the axial loads corrected
for the residual loads. Figure 4.6b shows the corre-
sponding unit shaft friction profiles with and without
correction for residual loads.

The unit shaft friction corrected for residual loads
are mostly lower than the uncorrected unit shaft
friction because for about 70% of the pile shaft (from
0 m to 12 m depth, or from 0 ft to 39 ft), the residual
unit shaft friction is negative. For 30% of the pile shaft
(from 12 m to 17.68 m depth, or from 39 ft to 58 ft),
the residual unit shaft friction is positive and there-
fore results in slightly higher corrected unit shaft capa-
city. Correction for the residual loads resulted in about
10% drop in the limit shaft capacity from 2,389 kN
(537 kips) to 2,156 kN (485 kips), and about 10%

increase in the ultimate base capacity from 2,170 kN
(488 kips) to 2,403 kN (540 kips).

Figure 4.5 Residual loads at the end of pile driving: (a)
profile of the residual loads in pile at different depths; (b)
profile of the residual unit shaft friction. (Modified after
Ganju et al., 2018.)
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Figure 4.6 Consideration of residual loads for loads measured at w/B 5 10%: (a) axial load transfer curves; (b) unit shaft friction
profiles. (Modified after Ganju et al., 2018.)



4.5 Comparison of Measured and Predicted Pile
Capacity

The ultimate unit base capacity qb,ult of a pile is often
calculated as a fraction of the CPT tip resistance qc

averaged near the depth of the pile base. The relationship
between qb,ult and qc is presented in design equations as
a function of the relative density of the soil (Han,
Prezzi, Salgado, & Zaheer, 2017; Salgado, Woo, &
Kim, 2011), diameter of the pile (Jardine et al., 2005)
or the vertical effective stress at the depth of the pile
base (Clausen et al., 2005). The ratio of the measured
unit base capacity qb to average cone resistance near
the pile base qcb,avg, at different settlement levels dur-
ing the SLT, is shown in Table 4.1. This ratio ranges
from 0.23 to about 0.36, with a value of 0.29 at the
ultimate limit state. The literature however suggests
that the value of qb,ult/qc is generally in the range of
0.3 to 0.8 (Chow, 1997; Lee & Salgado, 1999; Lehane
et al., 2005b; Salgado, 2008).

The unit shaft resistance qsL at the pile sand interface
is computed as the product of the normal stress s9h
at the interface and the soil-pile interface friction
coefficient tan d, where d is the interface friction
angle between the soil and pile surface. (Han, Ganju,
Salgado, & Prezzi, 2018; Jardine et al., 2005, Jardine,
Lehane, & Everton, 1993; Randolph, 2003; Salgado
et al., 2011). The normal stress s9h at the interface is
obtained as the product of the vertical effective stress
s9v and the coefficient of lateral earth pressure K.
K for driven piles, under the given soil conditions is
expected to be in the range of 0.5 to 2.5 according to the
literature (Fleming, Weltman, Randolph, & Elson,
2008; De Nicola & Randolph, 1993; Salgado, 2008),
which matches quite well with the measured values of
K shown in Figure 4.7. The qsL is also often calculated
as a fraction of the initial vertical effective stress s9v
(qsL 5 bs9v) or the cone resistance qc (qsL 5 csqc).
The value of b (a proxy for the product of K tan d)
is generally expected to be in the range of 0.25 to
1.8 for drill shafts, a similar value may be expected
for driven piles (given that K would be higher and
tand lower). The ratio of qsL to qc is expected to be in
the range of 0.1 to 1.1 for sands (Randolph, 2003;

Salgado et al., 2011), with higher values expected for
fine-grained soils, as also observed in Figure 4.7.

With high quality qc data, more sophisticated design
methods can be used to estimate the pile capacity.
These methods consider the effect of pile installation,
state of the soil in situ and the possible effects of pile
setup (Bowman & Soga, 2005; Lee, Kim, Salgado, &
Zaheer, 2010). As the pile is driven into the ground,
the unit shaft friction at a certain depth along the pile
decreases as the pile is driven down further. This is due
to a reduction in the normal stress on the pile with
the increasing number of hammer blows on the pile head.
This phenomenon is called friction degradation
(White & Bolton, 2002) and is accounted for in some
pile design methods by means of a shaft degradation
term (Han, Prezzi, Salgado, & Zaheer, 2017; Jardine
et al., 2005; Kolk et al., 2005; Lehane et al., 2005b;
Randolph, 2003).

As the test pile was driven in a soil profile with large
gravel content, sharp peaks in the qc profile were
observed, as seen in Figure 4.8. To mitigate the effect of
particle size, a 44.5-mm-diameter (1.75 inch) CPT cone
was used during testing. However, at depths where
gravel content was observed to be on the higher side
(50%), i.e., at depths of 9 m (29.5 ft) and 15–18 m (49–
59 ft), sharp peaks and valleys were still observed in the
qc profile. For estimation of pile capacity from the
CPT-based pile design methods, these peaks were exclu-
ded since these peaks are likely caused due to the
cone breaking and/or dragging down gravel particles.
A modified ‘‘lower bound’’ CPT, shown in Figure 4.8
alongside the gravel content, was used as the input in
the design methods.

The soil properties obtained from the laboratory
testing of in situ soil samples collected using the split-
spoon sampler are presented in Table 4.3. The interface
friction angles needed as input in some of the pile
design methods were chosen according to the recom-
mendations of Han et al. (2018) and Han, Ganju,
Salgado, & Prezzi (in press a). Using the soil pro-
perties in Table 4.3, the pile capacities were computed
using five of the most commonly used pile design
methods available in the literature: (1) Purdue pile
design method (Han, Prezzi, Salgado, & Zaheer, 2017;

TABLE 4.1
Comparison of unit base capacity qb and normalized unit base capacity qb/qcb,avg at different pile head settlements

Relative pile head settlement Unit base capacity (MPa) Unit base capacity (psi) qb/qcb,avg
1

0.05B 6.5 943 0.23

0.10B2 8.2 1,189 0.29

0.15B 9.3 1,349 0.33

0.21B3 10.4 1,508 0.36

Source: Modified after Ganju et al., 2018.
1qcb,avg computed as the average qc 1B above and 2B below the pile base (5 28.7 MPa 5 4163 psi).
2Ultimate load level.
3Plunging load level.
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0
Figure 4.7 Profiles of cone capacity, gravel content, b (~ qsL=sn0), coefficient of lateral earth pressure

0
K (~ qsL=(sn0 tan dcs)) and normalized unit limit shaft friction qsL/qc after correction for the residual loads. (Modified after
Ganju et al., 2018.)

Figure 4.8 High gravel content causes peaks in cone resi-
stance qc: (a) plot of cone resistance with ‘‘lower bound’’ of
cone resistance excluding the peaks; (b) plot of gravel content
vs. depth. (Modified after Ganju et al., 2018.)

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/03 13

Randolph, 2003; Salgado et al., 2011), (2) ICP method
(Jardine et al., 2005), (3) UWA method (Lehane et al.,
2005b), (4) NGI method (Clausen et al., 2005) and (5)
Fugro method (Kolk et al., 2005). Table 4.2 summarizes

the design equations for these five methods. The
capacities computed from the methods are presen-
ted in Table 4.4 together with the results from the
SLT and pile driving analysis (PDA) results. The PDA
results were obtained from GRL engineers.

The unit shaft friction profile computed from each
design method and the measured unit shaft friction
profile are presented in Figure 4.9. The pile design
methods predict the unit shaft capacity accurately,
while the unit base capacity is always overpredicted
by a factor of about two. Lehane, Schneider, and Xu
(2005a) reported similar observations about CPT based
pile design methods overestimating the total pile
capacity for piles driven in gravelly sands (Briaud,
Moore, & Mitchell, 1989; Nevels & Snethen, 1994). As
shown in Table 4.5, from the design methods, the qb,ult

to qcb,avg ratio is in the range of 0.40–0.60, while the
measured ratio is equal to 0.23. The ICP design method
produces the smallest ratio, but still it is almost twice
the measured value.

The unit base resistance of the pile at the limit state
qbL is comparable to the cone resistance qc measured
near the pile base (Salgado, 2008). However, from the
SLT data, we observe that the qbL is only one third of
the qc measured at that depth (see Table 4.1). While the
measured qbL (<10 MPa 5 1450 psi) may still be in
the process of reaching its full value, the measurement
of low qbL/qc ratio (0.36) suggests an overestimation of
the qc under the present soil conditions. The overesti-
mation of qb,ult from design methods may therefore be



TABLE 4.2
Design methods for driven piles in sand

Method and key

reference Limit unit shaft resistance qsL

Ultimate unit

base resistance qb,ult Comments

Purdue-CPT

(Han, Prezzi, Salgado,

& Zaheer, 2017;

Han, Ganju,

Salgado, & Prezzi,

in press b;

Randolph, 2003;

Salgado et al., 2011)

0
qsL~Ksn0 tan dc

h
K~Kminz(Kmax{Kmin) exp ({a )

B

Kmin~0:2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0

Kmax~0:01(qc=PA)= sh0=PA

h is the distance from the depth being

considered to the pile base;

Kmin 5 0.2; a 5 0.05.

qb,ult5(120.0058DR)qcb,avg —

ICP (Jardine et al.,

2005)

0 0
qsL~(srczDsrd ) tan dc

0� �0:13� �{0:38
0 sn0 h

src~0:029qc
pA R

0
Dsrd~2GDr=R�

2
�{1

G~qc 0:0203z0:00125g{1:216|10{6g�
0
�{0:5

g~qc pAsn0

Dr 5 .02 mm for lightly rusted steel piles;

h is the distance from the depth being

considered to the pile base, h/R $ 8.

qb,ult5max [0.3, 120.5

log (B/BCPT)] qcb,avg

BCPT is cone diameter

5 0.036 m.

Intended to predict the pile

bearing capacity 10 days

after driving for ‘‘virgin’’

piles.

UWA (Lehane et al.,

2005b)

� �
f 0 4GDr

qsL~ srcz tan dc
fc B	 � �
{0:5

0 h
src~0:03qc max ,2

B	 
{0:75
qc=pA

G=qc~185 0
sn0=pA

Dr~0:02 mm

f / fc 5 1 for compression and 0.75 for tension.

qb,ult50.6qcb,avg The method is intended to

predict the pile bearing

capacity measured 10–

20 days after driving.

NGI (Clausen et al.,

2005)

" #� � 0� �0:25
Z sn0 0

qsL~ max pA FDR
FtipFloadFmat, 0:1sn0Zbase pA� �1:7

FDR
~2:1 D�R{0:1( )

qc
D�R~0:4 ln � 0 �0:5

22 sn0pA

where z is the depth below the ground surface; zbase is the

pile base depth; Ftip 5 1.6; Fload 5 1.3 for compression;

Fmat 5 1.0 for steel and 1.2 for concrete pile; D�R is the

nominal relative density, which may be greater than

100%.

0:8qcb,avg
qb,ult~ 
 	 
�2

qcb,avg1z 0:4 ln 0 0:5
22 sð nb

pAÞ
s9vb is the vertical effective stress

at the depth of the pile base.

—

Fugro (Kolk et al.,

2005)

0� �0:05� �{0:9sn0 h
qsL~0:08qc if h=R§4

pA R
0� �0:05 � �

sn0 h
qsL~0:08qc (4){0:9 if h=Rv4

pA 4R

h is the distance from the depth being

considered to the pile base.

qb,ult~8:5pA

�
qcb,avg

pA

�0:5 The method is intended to

predict the pile bearing

capacity measured about

10 days after driving.

Source: Modified after Han, Prezzi, Salgado, & Zaheer, 2017.

Note: fc 5 critical-state friction angle; s9h0 5 initial horizontal effective stress at the depth being considered; B 5 pile diameter; R 5 pile radius;

pA 5 reference stress 5 100 kPa 5 1 tsf; qc 5 representative cone resistance of the soil layer; s9v0 5 initial vertical effective stress at the depth being

considered; dc 5 interface friction angle [ICP and UWA suggest using interface shear tests to determine the value of dc; if not feasible, it can also be

estimated from the mean particle size (Jardine et al., 2005; Lehane et al., 2005b). dc can also be determined from the critical-state friction angle in

sand by: dc 5 0.9fc (Foye, Abou-Jaoude, Prezzi, & Salgado, 2009; Salgado et al., 2011)]; qcb,avg 5 representative cone resistance at the pile base

level; this can be obtained by averaging the cone resistances near the pile base level.
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explained by the unrealistically high qc measured near
the pile base (#29 MPa 5 4206 psi). As the pile base
rests in a soil layer with high gravel content (50%), the

overestimation of qc appears to be an outcome of the
relative size of the CPT cone compared with the gravels.
Based on the theoretical equivalence of qbL and qc, the



TABLE 4.3
Values of the design parameters used in the capacity calculations

Depth (m) Depth (ft) ct
1 (kN/m3) ct

1 (lb/ft3) D50 (mm) D50 (inch) Gravel content (%) wcs (u) dcs/wcs dcs (u)

0–5.5 18–8 19.5 125 — — 0 30 0.82 24.6

5.5–8.2 18–27 20.0 128 0.4 0.02 4 32 0.82 26.2

8.2–10.4 27–34 21.5 138 4.5 0.18 49 35 0.66 23.1

10.4–16.8 34–55 20.0 128 0.9 0.04 10 32 0.76 24.3

16.8–22.6 55–74 21.5 138 4.1 0.16 43 34 0.68 23.1

Source: Modified after Ganju et al., 2018.
1Total unit weight.

TABLE 4.4
Shaft and base capacities measured from SLT and PDA and the pile capacities estimated from pile design methods at ultimate state
(w/B 5 10%)

Source Method

Time after initial

driving (days)

Shaft capacity

(kips)

Base capacity

(kips)

Total capacity

(kips)

Predicted Purdue-CPT — 635 978 1,613

ICP 10 462 813 1,276

UWA 10–20 590 1,130 1,720

NGI — 824 858 1,681

Fugro 10 712 945 1,657

Measured PDA-EOID1 0 211 280 491

PDA-BOR1 22 263 275 538

SLT2 13 537 488 1,025

SLT3 13 485 540 1,025

Source: Modified after Ganju et al., 2018.
1PDA results obtained from GRL.
2SLT results with shaft and base resistances not corrected for residual loads.
3SLT results with shaft and base resistances corrected for residual loads.

Figure 4.9 Comparison of unit shaft friction obtained from the SLT with estimates from CPT-based pile design methods.
(Modified after Ganju et al., 2018.)
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TABLE 4.5
The ratio of qb,ult to qcb,avg obtained from SLT and design
methods at w/B 5 0.1

Method qb,ult/qcb,avg

SLT 0.29

Purdue 0.52

ICP 0.43

UWA 0.60

NGI 0.46

Fugro 0.50

Source: Modified after Ganju et al., 2018.

TABLE 4.6
The ratio of qb,ult to qbL (assumed to be qcb,avg) obtained from
SLT and design methods at w/B 5 0.1

Method qb,ult/qbL

SLT 0.79

Purdue 0.77

ICP 0.43

UWA 0.60

NGI 0.66

Fugro 0.83

Source: Modified after Ganju et al., 2018.

ratio of base resistance at the ultimate limit state may
be recalculated assuming qc at the pile base to be equal
to qbL. This results in the measured qb,ult/qc to be equal
to 0.79. The qb,ult calculated from CPT design methods,
using the qcb,avg 5 qbL is presented in Table 4.6. The
values appear to be closer to the measured ratio,
suggesting that further work needs to be done to refine
the current design methods under such conditions.

5. STATIC AND DYNAMIC LOAD TESTS OF THE
OPEN-ENDED PIPE PILE

5.1 Pile Installation

Since the planed elevation for the head of the
production piles was at a depth of 8.53 m (28 ft) below
the ground surface, it was decided that the shaft
resistance that would develop within this depth should
not be measured in the static load test. To achieve this
goal, a 0.91-m-diameter (36 inch) casing was driven to
8.53 m (28 ft), and the soil inside it excavated prior to
pile driving (see Figure 5.1). The excavation may lead
to local disturbance in soil near the bottom of the
casing, but it would not affect the stress states in soil
away from the bottom of the excavation as only a small
cylindrical volume of soil was removed. As the surface
roughness of pile plays an important role in the sand-
pile interface behavior (Han, Ganju et al., 2018;
Tehrani et al. 2016; Tehrani, Han, Salgado, & Prezzi,
2017), the roughness of the pile surfaces was measured
by using a Mitutoyo SJ-410 profilometer. The average
roughness Ra was in the range of 14–18 mm for the
outer surface of the pile segments and in the range of
4–8 mm for the inner surface of the pile segments.

Figure 5.1 Dimensions of the test pile segments and
schematics of the pile driving. (Modified after Han, Ganju,
Prezzi, Salgado, & Zaheer, 2019.)
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On October 1 and 4, 2016, the two segments of the
test pile were driven in sequence by an APE Model
D70-52 single-acting diesel hammer with a ram weight
of 68.7 kN (15.4 kips) and a maximum stroke height of
3.43 m (11.25 ft), producing a maximum rated energy
of 235.64 kN-m (173.64 ft-kips). Before the bottom
segment was driven, the four centering bolts (shown in
Figure 3.6c) welded near the tip of the segment were
removed, and the holes left on the outer pipe were filled
in by welding to prevent soil from entering the space
between the two pipes during driving. Then, the bottom
pile segment was lowered into the borehole, centered
and driven into the ground to a depth of 16.8 m (55 ft)
from the ground surface. After the top segment was
positioned and welded to the bottom segment, the
gauge cables from the bottom segment were joined with
those from the top segment, fastened to the nuts welded
along the two sides of the top segment, and protected
with steel angles welded over the cables and strain
gauges on the top. Considering the significant amount



of heat generated from welding, the gauge cables were
wrapped with a thick layer of mineral wool for heat
isolation. Three days after the driving of the bottom
segment, the top segment was driven into the ground,
with the pile base reaching a final depth of 30.48 m
(100 ft) from the ground surface. The static load test
took place 8 days after the initial driving, and a restrike
was performed 7 days after that. The redundant part of
the top segment was cut so that there was a 0.76-m-long
(2.5 ft) segment of the pile exposed outside the ground
surface for the static load test. Figure 5.1 shows the
dimensions of the pile segments. After pile driving,
loose pea gravel was used to backfill the gap between
the casing and the test pile to prevent lateral instability
during the static load test.

Figure 5.2 shows the blow counts per meter of
penetration recorded during pile driving. The driving
resistance increased almost linearly with penetration
depth. Pile driving started with the pile base placed
(inside the pre-drilled borehole) at a depth of 8.53 m
(28 ft), where the confining effective stress in the soil
is not zero, thus resulting in about 40 blows/m in the
beginning of driving. This is different from the normal
cases in which piles are driven from the ground surface,
in which case blow counts at the beginning of driving
are nearly zero (Han, Prezzi, Salgado, & Zaheer, 2017;
Paik et al., 2003). No discontinuity was observed in the
profile of blow counts for the installation of the top and
bottom pile segments, suggesting that no set-up was
developed for the bottom pile segment during the three-
day wait period between driving of the two segments.
Plug measurement following the scheme discussed
in the previous section was carried out throughout the
pile driving process. Figure 5.3 plots the length of
the plug that formed inside the open-ended pile as
the pile was driven into the ground. The calculated
IFR decreased from 92% at the beginning of driving to

70% at the end of driving, when the final PLR was
77.7%. Dynamic load (PDA) tests were performed by
GRL Engineers, Inc. at the end of the initial pile driving
(EOID) and at the beginning of the restrike (BOR)
on October 19, 2016, 15 days after the initial driving.
The pile resistances obtained from the PDAs are
summarized in Table 5.1.

5.2 Static Pile Load Test

Figure 5.4 shows the loading system assembled for
load application and force and displacement measure-
ment during the static load test. The axial load was
applied by a hydraulic jack (20 MN, AFT-cellH Model
24) placed between the pile cap and the load cell, which
transferred the load to the reaction beam through the
spherical seating. The magnitude of the applied load
was measured by a load cell calibrated shortly before
the load test. Load cell measurements were cross-
checked by the pressure gauge readings in the hydraulic
jack, which had been calibrated separately from the
load cell. Four electrical dial gauges, placed 90 degrees
apart from each other, were mounted on reference
beams to measure the pile head settlements at these four
locations. All parts of the loading system were carefully
aligned to ensure that the static load was applied
through the center of the pile and that no bending
moment was introduced due to eccentric loading to the
extent that that can be done in the field. This was
reflected in the maximum differential settlement at
the pile head measured by the four dial gauges, which
was only 0.56 mm (0.022 inch) at the end of loading,
when the total average settlement at the pile head was
149 mm (5.87 inch).

Figure 5.2 Blow counts during pile driving. (Modified after
Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.)

Figure 5.3 Plug measurements during pile driving: soil plug
length and the incremental filling ratio. (Modified after Han,
Ganju, Prezzi, Salgado, & Zaheer, 2019.)
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TABLE 5.1
Resistances measured by different methods at different times

Source of

capacities

Time after initial

driving (days)

Shaft resistance

(kips)

Plug resistance

(kips)

Annulus

resistance (kips)

Base resistance (plug

resistance + annulus

resistance) (kips)

Total resistance

(kips)

PDA-EOID1 0 328 — — 175 503

PDA-BOR1 15 236 — — 305 541

Static load test2 8 576 80 419 499 1,075

Static load test3 8 509 70 496 566 1,075

Source: Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.
1Obtained from PDAs performed by GRL Engineers, Inc.
2Without correction for residual loads.
3After correction for residual loads.

Figure 5.4 Setup of the loading system and settlement
measurement for the static load test. (Modified after Han,
Ganju, Prezzi, Salgado, & Zaheer, 2019.)

In order to obtain a complete, realistic and well-
defined load-settlement curve, a slow-maintained static
load test was performed with small load increments, in
contrast to the four equal increments prescribed in
ASTM (2013) or the eight equal increments prescribed
in EUROCODE-7 (Selig, 1985). The static axial load
test started on October 12, 2016 (8 days after pile
driving). The pile was first loaded to 2225 kN (500 kips)
with loading increments of 445 kN (100 kips). After
that, smaller increments ranging from 222 kN (50 kips)
to 111 kN (25 kips) were used until the end of the test.

After each load increment was applied, the pile head
settlement was recorded at zero, one, two, five, and ten
minutes and every ten minutes thereafter. The load
at each load step was maintained until the settlement
rate at the pile head obtained from two consecutive
settlement readings became equal or less than 0.25 mm/hr.
In case this criterion could not be met in two hours,
the next increment was added only after the difference
between two consecutive settlement readings was less
than 5%. At a load equal to 6228 kN (1400 kips), the
pile started plunging into the ground with a settlement
rate of 50 mm/hr. Loading was then terminated, and
the pile was unloaded in four equal decrements with a
waiting period of 15 min between each load decrement.
The static load test lasted 40 hours.

During the static load test, two separate data
acquisition (DAQ) systems were used to collect data
from the two types of strain gauges due to their
different principles of measurement. Geokon Model
8025 series Micro-800 Datalogger and one addi-
tional multiplexer (Geokon Model 8032) were used
for the vibrating-wire strain gauges, whereas Campbell
Scientific Model CR9000X Datalogger with a series
of Analog Input Modules (Model CR9050 5-Volt)
was used for the electrical-resistance strain gauges.
The Model CR9000X Datalogger does not have
Wheatstone bridges built in; thus, each electrical-
resistance strain gauge was connected to the Datalogger
through a 4WFBS350 (350 Ohm, 4-Wire, Full-Bridge)
Terminal Input Module. Loggernet, a software devel-
oped by Campbell Scientific, was used to display and
store data collected through the dataloggers. Readings
were taken every 4 seconds for the electrical-resistance
strain gauges and every 2 minutes for the vibrating-wire
strain gauges.

5.3 Test Results

5.3.1 Load Settlement Curve

Figure 5.5a shows the load-settlement curve obtai-
ned from the static load test on the open-ended test pile.
The square symbols in the figure represent intermediate
readings that were used to determine the pile head
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settlement rate at each load level during the static load
test. The total resistance for an open-ended pile is the
summation of three resistance components: shaft, plug,
and annulus resistances. These, calculated from the
strain gauges, are shown in Figure 5.5b.

When the test pile was loaded, the rate of total resi-
stance mobilization with respect to pile head settlement
was quite high, dropping fast to a load level of 2,224 kN
(500 kips), which corresponded to a pile head settle-
ment of 9 mm (5 0.0136B). After that, the total resis-
tance continued to increase with a much gentler slope;
this is because the majority of the shaft resistance
had already been mobilized at that stage, as shown in
Figure 5.5b, and additional load applied at the pile
head was taken mainly by the pile base. The annulus
resistance mobilization started almost immediately
upon load application; in contrast, plug resistance
increased very slowly initially, building up more
significantly only when the pile head settlement
reached 30 mm (1.18 inch) (5 0.045B). Plug mechanics
involves a plug base load applied by the soil below the
pile base and the counter-balancing shear force that
develops between the plug and the inner surface of
the pile (Randolph, 2003). If the pile advances with a
relatively small plug base load, there will be minimal
compression of the lower end of the plug, mobilizing
a small inner shaft resistance near the pile base. As
loading proceeds and the plug densifies, these opposing
forces become more significant and the plug resistance
builds up.

The ultimate pile resistance has been widely defined
as the resistance developed when the pile head settle-
ment equals 10% of the pile diameter B; most current

design methods associate the estimated pile bearing
capacity with a pile head settlement equal to 0.1B (Basu
& Salgado, 2014; Clausen et al., 2005; Han, Lim,
Salgado, Prezzi, M, & Zaheer, 2015; Han, Salgado,
Prezzi, & Lim, 2017; Han, Prezzi, & Salgado, 2018;
Han, Salgado, & Prezzi, 2018; Jardine et al., 2005; Kolk
et al., 2005; Lehane et al., 2005b; Randolph, 2003;
Salgado, Han, & Prezzi, 2017). The ultimate resistance
of the test pile, corresponding to a pile head settlement
of 66 mm (2.69 inch) (5 0.1B), was 4782 kN (1075
kips). A pile head settlement of 149 mm (5.87 inch)
(5 0.225B) was required for the pile to start plunging
into the ground.

5.3.2 Residual Loads

Immediately after the end of pile driving, the
compressed soil below the pile base tends to rebound,
pushing the pile upwards, while the pile tends to recover
the elastic deformation caused by driving. Pile displace-
ment is resisted by the surrounding soil, leading to non-
zero residual loads locked in the pile (Briaud & Tucker,
1984; Fellenius et al., 2004; Han, Prezzi, Salgado, &
Zaheer, 2017; Kim et al., 2009; Lee et al., 2003; Paik
et al., 2003; Poulos, 1987; Seo et al., 2009).

As indicated earlier, due to the inertial force during
the pile driving process, even a small slippage between a
vibrating rod and the mounting blocks (Figure 3.3a)
may induce a drift in the reading of a vibrating-wire
strain gauge, making it not suited to estimating residual
loads. In contrast, the lightweight electrical-resistance
strain gauges are not affected by inertial forces.
Therefore, they are more suitable for the measurement

Figure 5.5 Load-settlement response during the static load test: (a) load-settlement curve (including intermediate readings, taken
during each load step); (b) mobilization of the shaft, plug and annulus resistances during the static load test. (Modified after Han,
Ganju, Prezzi, Salgado, & Zaheer, 2019.)
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Figure 5.6 Profile of measured residual loads in all pile segments and the force balance for the pile segments. (Modified after
Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.)
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of residual loads (Hajduk & Paikowsky, 2000; Han,
Prezzi, Salgado, & Zaheer, 2017).

All electrical-resistance strain gauges were zeroed
before pile driving so that the locked-in residual load
could be obtained from the strain gauge readings
collected at the end of driving. Figure 5.6 shows the
measured residual loads in each segment of the test pile.
The residual load in the top segment and the inner
pipe was compressive, whereas the residual load in the
outer pipe was tensile. Since the head of the pile was
free, and the top 8.53 m (28 ft) of the pile (inside
the casing) was not in contact with soil at the end of
driving, the residual load in the top 8.53 m (28 ft) of
the pile was zero. Figure 5.6 also shows the force
balance for the pile segments. At the end of driving,
there was a compressive force of 342 kN (77 kips) on
the annulus of the inner pipe. This force was balanced
by the shaft resistances acting (downwards) on the inner
pipe (44 kN 5 10 kips) and on the outer pipe (298 kN 5

67 kips).

5.3.3 Shaft and Base Resistances

When the static load was applied at the head of the
open-ended test pile, the load was transferred from
the top single-pipe segment to the bottom double-wall
segment. The load distribution within the pile can be
obtained from the strain gauge readings. Figure 5.7a
shows the load transfer curves at the ultimate load
level with no residual load correction. The load
decreases with increasing depth, as the load applied

at the head of the pile is gradually transferred to the
surrounding soil through frictional resistance along
the pile shaft.

Since all strain gauges were re-zeroed before the
static load test, the measurements during the test
were in addition to the locked-in residual loads
that already existed in the pile (due to pile installa-
tion) before the test. Thus, the actual loads in the
pile are the summation of the locked-in residual
loads and the loads directly measured during the
static load test. Figure 5.7b shows the load transfer
curves after correction for the residual loads. The
values of all the resistance components with and
without correction for the residual loads are summarized
in Table 5.1.

Figure 5.8 shows the profiles of the unit shaft
resistance at the ultimate load level with and without
correction for the residual loads. As seen in many
other pile load tests (Han, Prezzi, Salgado, &
Zaheer, 2017; Paik et al., 2003), the unit shaft resis-
tance is generally less after correction for residual
loads. This is because the residual shaft resistance
for most of the pile length, if not over the entire
length of the pile, points downwards to resist the
upward movement of the pile during the rebound at
the end of driving.

In empirical pile design methods, the unit shaft
resistance is often directly related to the initial vertical
effective stress s9v0 by: qsL 5 bs9v0; this is known as
the b method. Figure 5.9 shows the back-calculated
b values (5 qsL /s9v0) for the outer surface of the test pile



Figure 5.7 Load transfer curves at the ultimate load level (w 5 0.1B): (a) without correction for the residual loads; (b) after
correction for the residual loads. (Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.)
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at the ultimate load level after correction for the
residual loads. The limit unit shaft resistance can also
be considered as a fraction of the cone resistance qc in
design practice. The ratio between qsL and qc is shown
in Figure 5.9. The ratio obtained from the static load
test is in a similar range (0.15%–0.4%) as that suggested
by Lee et al. (2003) for open-ended pipe piles. Given the
frictional nature of the unit limit shaft resistance, it can

also be expressed as the product of the mobilized
normal effective stress s9h and the tangent of the pile-
soil interface friction angle dcs at the critical state: s9h
tandcs, and s9h 5 K s9v0, where K is the mobilized
coefficient of lateral earth pressure and s9v0 is the initial
in-situ vertical effective stress at the depth being
considered. The profile of K obtained from the static
load test is plotted in Figure 5.9 along with other
quantities of interest.

The unit annulus resistance qann and the unit plug
resistance qplug can both be related to a representative
cone resistance qcb,avg at the pile base. Table 5.2
summarizes the values of qann and qplug normalized
with respect to qcb,avg (5 22.8 MPa 5 3307 psi) at
several settlement levels. Because the diameter of the
cone used in the CPT test, 44.45 mm (1.75 inch), is
comparable in size to the wall thickness (50.8 mm 5

2 inch) of the test pile, the unit annulus resistance qann is
comparable in magnitude to the cone resistance qcb,avg

at the ultimate load level.

The soil plug was inactive at the beginning of
loading, with qplug mobilized only to 0.01qcb,avg when
w 5 0.05B. As the loading progressed further, the soil
plug gradually became active, and a plug resistance
qplug 5 0.06 qcb,avg was measured at the ultimate load
level (w 5 0.1B), with this value then doubled (5 0.12
qcb,avg) at the plunging load. This would suggest that
the proposal of Lehane and Randolph (2003) of
considering plug resistance to be comparable to the
values of base resistance for non-displacement piles,
calculated using the Lee and Salgado (1999) qb/qc

relationships, which works well in sand, might slightly
overpredict plug resistance in gravelly sand because of
the high qc values.

Figure 5.8 Profiles of the unit shaft resistance on the outer
and inner pipes at the ultimate load level (w 5 0.1B) with and
without correction for the residual loads. (Modified after Han,
Ganju, Prezzi, Salgado, & Zaheer, 2019.)

0
Figure 5.9 Cone resistance, gravel content, b (~ qsL=sn0), normalized unit limit shaft resistance qsL/qc and coefficient of lateral

0
earth pressure K (~ qsL=(sn0 tan dcs)) along the test pile after correction for the residual loads. (Modified after Han, Ganju, Prezzi,
Salgado, & Zaheer, 2019.)
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5.4 Design Methods for Open-Ended Pipe Piles

Design methods have been proposed to estimate the
bearing capacity of open-ended pipe piles driven in
sand. In absence of well-developed design methods for
open-ended piles in gravelly soil, two of the sand
methods, ICP and UWA methods, were used to
estimate the axial capacity of the test pile. Table 5.3
summarizes the design equations for these methods,
and Table 5.4 provides the input values of the para-
meters used in the estimations. As seen in Figure 5.10,
the profile of the CPT cone resistance has sharp peaks

and valleys because of the gravel particles present in the
soil profile. Given that the cone is not substantially
greater than the gravel particles, the cone resistance
in soil with a large gravel content reflects the response
of soil that should be viewed not as a continuum but
as a discrete particulate system. When the advancing
cone hits a large particle, it pushes it down with it,
and the cone resistance reflects the resistance to
penetration not only of the cone but also of a larger
object, which may, in addition, hit against and even
interlock with other large particles, leading to peaks
in the cone resistance profile. When the cone then

TABLE 5.2
Annulus resistance and plug resistance (after correction for residual loads) normalized with respect to cone resistance qcb,avg at the pile
base at different relative settlement levels

Relative pile head

settlement w/B

Annulus

resistance Qann

(kips)

Unit annulus

resistance qann

(MPa) qann/qcb,avg

Plug resistance

Qplug (kips)

Unit plug

resistance qplug

(MPa) qplug/qcb,avg

0.05 386 16.5 0.72 13 0.2 0.01

0.1 (ultimate load) 496 21.2 0.93 70 1.3 0.06

0.225 (plunging load) 616 26.3 1.15 152 2.8 0.12

Source: Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.

TABLE 5.3
Design methods used for the estimation of the pile resistances for open-ended pipe piles in sand

Method and key

reference Limit unit shaft resistance qsL Ultimate unit base resistance qb,ult Comments

ICP (Jardine

et al., 2005)
qsL~ s

0

rczDs
0

rd

� �
tan dcs

s
0

rc~0:029qc

s
0

n0

pA

� �0:13
h

R�

� �{0:38

, R�~ R2{R2
i

� �0:5

Ds
0

rd~2GDr=R

G~qc 0:0203z0:00125g{1:216|10{6g2
� �{1

g~qc pA s
0

n0

� �{0:5

R* is equivalent radius; Dr 5 0.02 mm for lightly

rusted steel piles; h is the distance from the depth

being considered to the pile base, h/R* $ 8.

Pile is unplugged if: Bi§0:02(DR{30) or

Bi

BCPT
§0:083

qc

PA

Unplugged: qb,ult = qc (on the annular

area)

Plugged: qb,ult = max[0.5–0.25 log

(B / BCPT), 0.15, Ar]qcb,avg

DR is relative density, in percentage;

BCPT is cone diameter (5 0.0445 m in

the present case).

Intended to predict

the pile bearing

capacity 10 days

after driving for

‘‘virgin’’ piles.

UWA (Lehane

et al., 2005b)
qsL~

f

fc
s
0

rcz
4GDr

B

� �
tan dcs

s
0

rc~0:03:qc Arb
�ð Þ0:3 max

h

B
,2

� �	 
{0:5

, Arb
�~1{IFR

Bi

B

� �2

G=qc~185
qc=pA

s
0
n0=pA

� �0:5

" #{0:75

Dr~0:02 mm

f / fc 5 1 for compression and 0.75 for tension; Arb
�

.

is effective area ratio; IFR is incremental filling ratio,

IFRmean #min[1, (Bi /1.5)0.2], Bi in meters.

qb,ult~ 0:15z0:45 Arb
�ð Þqcb,avg

Arb
�~1{FFR

Bi

B

� �2

FFR is final filling ratio measured at the

end of pile driving, average over 3Bi,

if not measured, it can be roughly

approximated by using the same

equation of IFR.

The method is

intended to predict

the pile bearing

capacity measured

10–20 days after

driving.

Source: Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.

Note: fcs is the critical-state friction angle; s’h0 is the initial horizontal effective stress at the depth being considered; B is the pile outer

diameter; Bi is the pile inner diameter; R is the outside pile radius; Ri is the inside pile radius; pA is the reference stress 5 100 kPa; qc is the

representative cone resistance of the soil layer; s9v0 is the initial vertical effective stress at the depth being considered; dcs is the interface friction angle

[ICP and UWA suggest using interface shear tests to determine the value of dcs; if not feasible, it can also be estimated from the mean particle size

(Jardine et al., 2005; Lehane et al., 2005b); qcb,avg is the representative cone resistance at the pile base level; this can be obtained by averaging the

cone resistances near the pile base level.
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finally pushes the large particle aside, a valley may be
observed in the cone resistance profile, which, depend-
ing on the gravel content, may be more representative of
composite action of the matrix soil and gravel.

In our calculations, values of cone resistance from a
lower-bound profile drawn approximately through the
valleys of the profile were used to estimate the shaft

TABLE 5.4
Values of the design parameters used in the resistance calculations

Layer no. Depth (m) Depth (ft) ct kN/m3) ct
1 (lb/ft3) D50 (mm) D50 (inch)

Gravel

content wcs (deg) dcs/wcs dcs (deg)

1 0–5.5 0–18 19.5 125 — — 0% 30 0.82 24.6

2 5.5–8.2 18–27 20.0 128 0.4 0.02 4% 32 0.82 26.2

3 8.2–10.4 27–34 21.5 138 4.5 0.18 49% 35 0.66 23.1

4 10.4–16.8 34–55 20.0 128 0.9 0.04 10% 32 0.76 24.3

5 16.8–22.6 55–74 21.5 138 4.1 0.16 43% 34 0.68 23.1

6 22.6–32.6 74–107 21.5 138 1.1 0.04 28% 33 0.76 25.1

Source: Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.

Note: The critical-state internal friction angle fcs was estimated from the mean particle size D50, based on the dependence of fcs on D50 observed

by Han et al. (2018). The ratio dcs/fcs was evaluated based on the relationship proposed by Han et al. (2018) between dcs/fcs, D50, and pile surface

condition (rusted steel in the current case).

Figure 5.10 Cone resistance qc, gravel content, and comparison of the unit limit shaft resistance qsL obtained from the static load
test (after correction for the residual loads) and those estimated by using the ICP and UWA methods. (Modified after Han, Ganju,
Prezzi, Salgado, & Zaheer, 2019.)

resistance of the test pile. Figure 5.10 compares the
unit limit shaft resistance profiles obtained from
the static load test and the ICP and UWA design
methods. The two methods produce good estimates
above z 5 16 m (52 ft), where the soil has a lower
gravel content, except for a thin layer between z 5 8 m
(26 ft) to 9 m (30 ft). Both design methods significantly

overestimate the unit shaft resistance below z 5 16 m
(52 ft), where the gravel content was greater than 30%

at most depths.

Table 5.5 compares the shaft and base resistances
measured from the static load test with the estimates
obtained by using the ICP and UWA methods. While
these sand methods overestimate the shaft resistance by

a factor of two, they produce good estimates for the
base resistance. This is because the annulus resistance
takes the main portion of the base resistance in the
present case, and the annulus (wall) thickness is
comparable to that of the CPT cone, and therefore
the cone resistance obtained is representative of what
the pile annulus would experience.
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TABLE 5.5
Comparison between the predicted and measured (at the ultimate load level when w 5 0.1B) pile capacities

Source of

capacities

Time after initial

driving (days)

Shaft resistance

(kips)

Plug resistance

(kips)

Annulus

resistance (kips)

Base resistance (plug

resistance + annulus

resistance) (kips)

Total resistance

(kips)

Static load test1 8 576 80 419 499 1,075

Static load test2 8 509 70 496 566 1,075

ICP method 103 1,084 — — 499 1,582

UWA method 103 958 — — 589 1,547

Source: Modified after Han, Ganju, Prezzi, Salgado, & Zaheer, 2019.

Note: values shown in bold are the experimental results to which the predictions are compared.
1Without correction for residual loads.
2After correction for residual loads.
3The time after pile installation to which the prediction method applies.

6. COMPARISON OF THE RESPONSE OF THE
CLOSED- AND OPEN-ENDED PIPE PILES

6.1 Driving Resistance

As the test piles were driven into the ground, the
blow counts per unit length of pile penetration were
recorded for all the test and reaction piles. As shown
in Figure 6.1, the driving resistance for the closed-
ended test pile is always greater than that for the open-
ended test pile (with almost the same outer diameter).
The driving resistance records for the open-ended
reaction piles (with layouts and dimensions provided
in Figure 6.2) are plotted in Figure 6.3. The driving
resistance of the open-ended test pile was greater than
those of all the reactions piles because the annulus
thickness (52 inch) of the open-ended test pile was
greater than that (50.5 inch) of the reaction piles.

The length of the soil plugs of all the open-ended test
piles was continuously measured during the entire driv-
ing process by using the aforementioned weight system
and the measurement scale on the piles. Figure 6.3

shows the driving resistance records and the incre-
mental filling ratio IFR plotted as a function of depth
for all the open-ended pipe piles. The final plug ratio
PLR for the open-ended test pile was 77.7% at the
end of driving, when the IFR was 70%. Plug formation
for the four reaction piles (ROEP 3, 6, 7, and 10 in
Figure 6.2) was also measured, and the profiles of the
IFR for these piles are compared with that of the test
pile in Figure 6.3b. The IFR for the test pile was greater
than those for the reaction piles at the beginning of
driving, and as driving continued, the IFR of the test
pile gradually approached that of the reaction piles.
This is because the driving of the open-ended test pile
started at a depth of 8.53 m (its plug length was zero at
this depth). On the other hand, when the reaction piles
(which were driven from the ground surface) reached a
driving depth of 8.53 m, there was already a volume of
soil (plug) inside the pile that resisted the soil below the
pile from entering it. This resulted in a lower IFR than
that of the test pile. As the lengths of the plugs of the
test pile and the reaction piles increased, the values of
the IFR became similar, as can be seen in Fig 6.3b.

Despite the differences observed in the driving
resistance records of the reaction piles, the profiles of
the incremental filling ratio for these piles were similar
and repeatable. This was caused by the gravel-size
particles present in the soil profile. As the pile was
driven into the ground, the driving resistance might
increase or drop drastically as the pile annulus (13 mm
(0.51 inch) in thickness for the reaction piles) encoun-
tered large particles (as large as 50 mm (1.97 inch)) or
when these particles moved out of the way of the
advancing pile. In contrast, plug formation is less affec-
ted by these local variations in gradation in the soil
profile since it results mainly from the interaction of the
entire soil plug with the surrounding pile inner surface
and the soil right beneath the soil plug.

6.2 Load-Settlement Response

The limit and ultimate resistances of the piles were
obtained from the load-settlement curves. The ultimate
load was defined as the resistance developed when the
pile head settlement w 5 0.1B (B being the pile outer

Figure 6.1 Comparison of the driving resistance (blow
counts) of the closed-ended and open-ended test piles.
(Modified after Han, Ganju, Salgado, & Prezzi, in press b.)
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Figure 6.2 Layout of the two test piles and the reactions piles for the static load tests. (Modified after Han, Ganju, Salgado, &
Prezzi, in press b.)

Figure 6.3 Driving records of the open-ended test pile and the open-ended reaction piles: (a) blow counts; (b) incremental filling
ratio (IFR) measured during pile driving. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)
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diameter in the case of the open-ended pipe pile). The
0.1B ultimate load criterion is widely used, and most of
the current pile design methods predict pile resistances
defined according to this criterion (Basu & Salgado,
2014; Clausen et al., 2005; Gavin & Lehane, 2007; Han,
Prezzi, Salgado, & Zaheer, 2017; Han, Salgado, Prezzi,
& Lim, 2017; Jardine et al., 2005; Kolk et al., 2005;
Lehane et al., 2005b; Randolph, 2003; Xu, Schneider, &
Lehane, 2008)

Figure 6.4 shows the load-settlement curves obtained
from the static load tests for the two test piles. By using
the 0.1B criterion, the ultimate resistances were
determined as 4,559 kN (1,025 kips) for the closed-
ended test pile and 4,782 kN (1,075 kips) for the open-
ended test pile. The open-ended test pile showed greater
additional resistance mobilization from the ultimate
load to the plunging load when compared with the
closed-ended test pile; this is due to the contribution



Figure 6.4 Comparison of the load-settlement curves obtained from the static load tests for the (a) closed-ended test pile and
(b) open-ended test pile. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)

Figure 6.5 Development of the resistance components during the static load tests for the (a) closed-ended test pile and (b) open-
ended test pile. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)
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from the plug to the total pile resistance, as explained in
the next section.

The total pile resistance measured at the head of
a pile is composed of the shaft and base resistances.
The shaft resistance mobilized by each soil layer at each
loading stage of the pile load tests was directly measured
by the strain gauges installed on both the test piles.

In the case of the open-ended test pile, which consisted
of a double-wall system with outer and inner pipes
straining independently, the base resistance was further
decomposed into the plug and annulus resistances.
Figure 6.5 shows the development of these resistance
components as a function of the pile head settlement.
The shaft resistances of both test piles were fully



mobilized at small pile head settlement in the range
of 10–20 mm (0.39–0.79 inch). In contrast, the base
resistances were mobilized slowly but continuously until
the end of the static load tests. The plug resistance,
which started to develop only after 30–40 mm (1.18–1.57
inch) of settlement at the head of the open-ended pipe
pile, contributed to the additional increase in its total
resistance after the ultimate load level had been reached
(Figure 6.5). The resistance components obtained from
the static and dynamic load tests at the ultimate load
level are summarized in Table 6.1. The static capacities
estimated from PDAs were conservative when compared
with that obtained from the static load test.

6.3 Shaft Resistance

With the readings from the strain gauges densely
installed on the test piles, detailed profiles of the unit
shaft resistance can be obtained. Figure 6.6 compares
the profiles of the unit shaft resistances for the two test
piles at the ultimate load level (when w 5 0.1B). The
unit shaft resistance of the closed-ended test pile is
significantly greater than that of the open-ended test
pile at any depth considered. This is due to the greater
level of soil densification and greater lateral stress
buildup for the closed-ended test pile than for the open-
ended test pile. The open-ended test pile was only
partially plugged, with an IFR in the 80%–90% range
when at a depth corresponding to the base of the
closed-ended test pile.

The unit shaft resistance ratio of the open-ended test
pile to the closed-ended test pile is as low as 0.25, which
is much lower than the range of 0.5–0.7 as reported in
the literature (Paik, Salgado, Lee, & Kim, 2003). This is
due to the effect of the shaft degradation caused by pile
driving as the two test piles were driven to different
depths. A method was proposed by Han, Ganju, Prezzi,
and Salgado (in press a) to correct the unit shaft
resistance measured from the static load test to the
undegraded shaft resistance mobilized before shaft
degradation took place. After the correction, the ratio

of the undegraded unit shaft resistance for the open-
ended test pile to that for the closed-ended test pile lies
in the range between 0.4 and 0.8, matching the range
reported in the literature.

A number of CPT-based pile design methods have
been proposed to estimate the ultimate resistance of
closed-ended and open-ended pipe piles driven in sand.
The applicability of these design methods for resistance
predictions of piles driven in sand containing gravel can
be assessed by comparing the resistances measured in
the present static load tests with those estimated by
using these methods. Figure 6.7 and Figure 6.8 show
such a comparison for the closed-ended and open-ended
test piles for the Purdue method (Han, Prezzi, Salgado,
& Zaheer, 2017), ICP method (Jardine et al., 2005), and

TABLE 6.1
The resistance components measured (at the ultimate load level when w 5 0.1B) from the static and dynamic load tests

Test method

Time after initial

driving (days)

Shaft resistance

(kips)

Plug resistance

(kips)

Annulus

resistance (kips)

Base resistance3

(kips)

Total resistance

(kips)

Closed-ended

test pile

Static load test1 13 536 — — 489 1,025

Static load test2 13 484 — — 541 1,025

PDA-EOID4 0 211 — — 280 491

PDA-BOR4 22 263 — — 275 538

Open-ended

test pile

Static load test1 8 576 80 419 499 1,075

Static load test2 8 509 70 496 566 1,075

PDA-EOID4 0 328 — — 175 503

PDA-BOR4 15 236 — — 305 541

Source: Modified after Han, Ganju, Salgado, & Prezzi, in press b.
1Without correction for the residual loads.
2After correction for the residual loads.
3Equal to the sum of plug and annulus resistances for the open-ended pile.
4Obtained from PDA performed by GRL Engineers, Inc.

Figure 6.6 Comparison of the unit shaft resistance profiles
obtained from the static load tests for the closed-ended and
open-ended test piles after correction for the residual loads.
(Modified after Han, Ganju, Salgado, & Prezzi, in press b.)
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Figure 6.7 Cone resistance qc, gravel contents, and unit shaft resistance profiles obtained from the static load test and estimated
by using CPT-based methods for the closed-ended test pile. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)

Figure 6.8 Cone resistance qc, gravel contents, and unit shaft resistance profiles obtained from the static load test and estimated
using CPT-based methods for the open-ended test pile. (Modified after Han, Ganju, Salgado, & Prezzi, in press b.)
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UWA method (Lehane et al., 2005b). As shown in
Figure 6.7, there is good agreement between the
predicted and measured unit shaft resistances for the
closed-ended pile, except near a depth of about 9 m,
where noticeable overprediction is observed. This is
because the gravel content of the soil profile was low
(,20%) throughout the length of the closed-ended test
pile (see Figure 6.7), and therefore the shaft resistance
predictions of the CPT-based sand methods were good
for most depths. The exception was near z 5 9 m (29.5
ft), where the gravel content was 49%, resulting in a

cone resistance value of almost 40MPa (5802 psi). The
existence of large-size particles makes the cone resis-
tance less representative of the soil strength, as the cone
may push on a large particle a certain distance in the
ground, virtually changing the shape and cross section
of the penetrometer. As a result, high cone resistance
was measured in sand with high gravel content, leading
to overestimation of shaft resistance at that depth.

The effect of the gravel content on cone resistance
measurement and the shaft resistance overestimation is
also observed for the case of the open-ended test pile.



TABLE 6.2
Unit plug and annulus resistances for the open-ended test pile and base resistance for the closed-ended test pile normalized with respect to
the cone resistance at the pile base for different pile head settlement levels

Open-ended test pile Closed-ended test pile

Relative pile head

settlement w/B

qplug

(MPa)

qplug

(psi)

qplug/

qcb,avg

qann

(MPa)

qplug

(psi)

qann/

qcb,avg

qb

(MPa) qb/qcb,avg

qb

(MPa)

qplug

(psi) qb/qcb,avg

0.05 0.2 29 0.01 16.5 2393 0.72 5.09 0.22 6.5 943 0.23

0.1 (ultimate load) 1.3 189 0.06 21.2 3075 0.93 7.21 0.32 8.2 1189 0.29

0.22 (plunging load) 2.8 406 0.12 26.3 3814 1.15 9.78 0.43 10.4 1508 0.36

Source: Modified after Han, Ganju, Salgado, & Prezzi, in press b.

Note: qplug 5 unit plug resistance; qann 5 unit annulus resistance; qb 5 unit base resistance.

All the resistances were corrected for the residual loads.

Figure 6.9 Comparison of the base resistances measured from the static load tests with estimations obtained using
CPT-based methods for the (a) closed-ended test pile and (b) open-ended test pile. (Modified after Han, Ganju, Salgado, &
Prezzi, in press b.)
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As shown in Figure 6.8, good agreement between the
measured and predicted unit shaft resistances was
obtained for most layers above 16 m (52.5 ft), except
near 9 m (29.5 ft), and significant overprediction was
produced elsewhere. The performance of the CPT-
based sand methods is closely related to the gravel
content, i.e., overprediction of the unit shaft resistance
occurs mostly at depths with large gravel content (50%

near z 5 9 m (29.5 ft), and mostly in the 30%–40%

range at depths greater than 16 m (52.5 ft)).

6.4 Base Resistance

Given the similarities in the mechanisms of mobiliza-
tion of pile base resistance and cone resistance, the unit
base resistance can be directly linked to the cone
resistance qc as a fraction of it (Fleming et al., 2008;
Han, Prezzi, Salgado, & Zaheer, 2017; Jardine et al.,
2005; Lehane et al., 2005b; Salgado, 2008). Table 6.2
summarizes the unit base resistances (including unit
plug and annulus resistances for the open-ended test

pile) mobilized at several pile head settlement levels;
these resistances are normalized with respect to the
average cone resistance at the depth of the correspond-
ing pile base (qcb,avg 5 28.7MPa for the closed-ended
test pile and qcb,avg 5 22.8MPa for the open-ended test
pile calculated by averaging qc from 1B above to 2B
below the pile base). Lee et al. (2003) performed open-
ended model pile tests in sand, and a qb/qc 5 0.35 was
obtained for the case of IFR 5 70% (at the end of pile
driving) at the ultimate load level (when w 5 0.1B). The
value for this ratio is similar to what was obtained in the
present pile load test (qb/qc 5 0.32) at the ultimate load.

The CPT-based pile design methods (Purdue method
(Han, Prezzi, Salgado, & Zaheer, 2017), ICP method
(Jardine et al., 2005), and UWA method (Lehane et al.,
2005b) were used to estimate the ultimate base resistance
for the test piles, with the results compared with those
obtained from the static load tests in Figure 6.9. Though
all three CPT-based methods produced significant
overprediction of the base resistance of the closed-ended
test pile, they performed well for the open-ended test



pile. The different performances of the design methods
for the two test piles is due to the effect of the gravel
content and geometry of the pile base. The gravel
content was 49% at the base level of the closed-ended
test pile, leading to an excessively high qc value and, thus
the overestimation of the base resistance. However, for
the open-ended test pile, since the annulus thickness
(551 mm 5 2 inch) is similar to the diameter of the CPT
cone (BCPT 5 44.5 mm 5 1.75 inch), the cone resistance
is representative of the mobilization of the annulus
resistance, which is equal to 87.6% of the base
resistance. This makes the CPT-based methods applic-
able for the prediction of the base resistance of the
open-ended test pile, despite the fact that the gravel
content at the base level was 28%.

7. SUMMARY AND CONCLUSION

Static and dynamic load tests were performed on
large-diameter closed-ended and open-ended pipe piles
driven at the construction site for the eastbound
Sagamore Parkway Bridge, West Lafayette IN. The
test piles were heavily instrumented with both vibrat-
ing-wire and electrical-resistance strain gauges at the
Bowen Laboratory. A double-wall instrumentation was
used for the open-ended test pile to separate measure-
ments for the annulus, inner shaft (plug) and outer
shaft resistances. Site investigation consisting of multi-
ple SPTs and CPTs was carried out near the test piles.
Soil samples collected from the SPTs were tested in
the laboratory to obtain basic soil properties. The soil
profile at the construction site consists mainly of sandy
soil with various gravel contents at different depths.

Pile driving of the two test piles were monitored. The
driving resistance (blow counts) for the closed-ended
pile was consistently greater than that of the open-
ended pipe at any given depth. The plug formation
process (represented by IFR) during installation of the
open-ended pile was measured using a weight system.
The PLR was 77.7% at the end of driving. Slow-main-
tained static load tests were performed on the closed-
ended and open-ended test piles in tandem. Both test
piles were loaded to settlement levels greater than 20%

of the pile diameter, when the piles plunged into the
ground with a large settlement rate. The data measured
from the static load test were processed to generate the
load-settlement curves (with each resistance component
separated), load transfer curves and unit shaft resis-
tance distributions along the pile length. The residual
loads that were locked in the piles after installation were
obtained from the electrical-resistance strain gauges.

The resistance components measured from the static
load tests were compared with the resistance estimates
obtained using CPT-based pile design methods. The
design methods provide good estimates for the shaft
resistance in sandy soil with low gravel content (,20%)
but significantly overpredict the shaft resistance in soil
with high gravel content (.30%). Significant over-
estimation was obtained for the base resistance of
the closed-ended pile, because high gravel content

(near 50%) was present at the depth of the pile base.
Good agreement was found for the base resistances
obtained from the design methods and the static load
test for the open-ended pile, although the pile base is
located in soil with high gravel content. This is because
the annulus resistance, which takes the main portion
(87.6%) of the base resistance, is well represented by the
cone resistance (because of comparable cone diameter
with the annulus thickness).

The present study significantly advanced our under-
standing of the behavior of closed-ended and open-
ended pipe piles driven in gravelly sand, and it brought
insights to the applicability of the current CPT-based
pile design methods for piles in gravelly soil profile.
The results obtained from the static pile load tests
provide valuable reference for the design of the bridge
foundations. The results of this research clearly show
that additional research is needed to improve design
methods for piles in soil profiles containing gravel.
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